Prostaglandins from a zoanthid: paclitaxel-like neurite-degenerating and microtubule-stabilizating activities.

نویسندگان

  • Chunguang Han
  • Jianhua Qi
  • Xiaojin Shi
  • Youji Sakagami
  • Takahiro Shibata
  • Koji Uchida
  • Makoto Ojika
چکیده

Two prostaglandins, PGA2 and PGB2, were isolated from the Okinawan zoanthid, Palythoa kochii, during a search for paclitaxel-like neurite-degenerating compounds from natural sources using a cell-based assay method. In the presence of PGA2 at 30 microM, the neuronal processes induced in PC12 cells by the nerve growth factor (NGF) degenerated over 24 h, whereas PGB2 had no effect on the neuronal processes of PC12 cells. This activity of PGA2 was similar to that of the microtubule-stabilizing agents, paclitaxel (Taxol) and epothilone A, unlike the microtubule-depolymerizing agent, colchicine, which brought about quick neurite degeneration within 3 h. PGA2 stimulated tubulin polymerization, although less potently than paclitaxel. An examination of structure-activity relationships across several PGs suggests that the cyclopentenone ring structure and the orientation of its dipolar moment played an important role in the paclitaxel-like neurite-degenerating activity. These results suggest that the cyclopentenone-type PGs can interact with microtubules to inhibit their function like paclitaxel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Microtubules Catalyze Formation of Navigator-TRIO Complexes to Regulate Neurite Extension

Neurite extension is regulated by multiple signaling cascades that ultimately converge on the actin and microtubule networks [1]. Rho GTPases, molecular switches that oscillate between an inactive, GDP-bound state and an active, GTP-bound state, play a pivotal role in controlling actin cytoskeleton dynamics in the growth cone, whereas the dynamic behavior and interactions of microtubules are la...

متن کامل

Cytoskeletal and morphological alterations underlying axonal sprouting after localized transection of cortical neuron axons in vitro.

We examined the cytoskeletal dynamics that characterize neurite sprouting after axonal injury to cortical neurons maintained in culture for several weeks and compared these with initial neurite development. Cultured neocortical neurons, derived from embryonic day 18 rats, were examined at 3 d in vitro (DIV) and at various time points after axotomy at 21 DIV. The postinjury neuritic response was...

متن کامل

Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative

Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...

متن کامل

Microtubule stabilization specifies initial neuronal polarization

Axon formation is the initial step in establishing neuronal polarity. We examine here the role of microtubule dynamics in neuronal polarization using hippocampal neurons in culture. We see increased microtubule stability along the shaft in a single neurite before axon formation and in the axon of morphologically polarized cells. Loss of polarity or formation of multiple axons after manipulation...

متن کامل

Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents.

A mechanism-based screening program aimed at the discovery of new antimicrotubule agents from natural products yielded laulimalide and isolaulimalide, two compounds with paclitaxel-like microtubule-stabilizing activity. Treatment of A-10 cells with laulimalide resulted in a dose-dependent reorganization of the cellular microtubule network and the formation of microtubule bundles and abnormal mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 70 3  شماره 

صفحات  -

تاریخ انتشار 2006